## PI

## Multi-Axis Stages



## XY, XYZ, Multi-Axis Micropositioning Stages



XY Micropositioning Stage for HighResolution Microscopes


Miniature Tip/Tilt Stage with Piezo Drive Option


OEM Planar XY Micropositioning Scanner System


XY Microscope Micropositioning Stage: Manual \& Motorized


Cross-Roller Guided Linear Slide


XY Sub-Miniature Linear Micropositioning Slide with Piezo Linear


M-880.PD for planar load positioning up to 20 kg with submicron accuracy


Tip/Tilt Stage with Piezo Drive Option for Nanometer Precision


M-116 Worm-Gear Drive Rotary Stages combined with M-110 XY Linear Stages


The M-811.STV vacuum-compatible Hexapod comes complete with software and a highly specialized Hexapod controller. It combines small size with high-load capacity and high accuracy.

## M-900K OEM Planar XY Micropositioning Scanner

## High-Precision XY Positioning System

Max. Velocity 10 mm/s<br>$\square$ Linear encoder with $0.1 \mu \mathrm{~m}$ Resolution<br>$\square$ Self-Locking<br>$\square$ Load Capacity to 660 N<br>$\square$ Low-Backlash, Direct Drive<br>■ DC-Servo or Stepper Motor Drives

| Model | Travel range | Min. incremental motion | Bidirectional repeatal |
| :--- | :--- | :--- | :--- |
| M-900 KOPS <br> planar scanner | $50 \times 50 \mathrm{~mm}$ | $0.3 \mu \mathrm{~m}$ | $\pm 0.1 \mu \mathrm{~m}$ |

## M-686K PILine ${ }^{\ominus}$ Microscopy XY Micropositioning Stage

Low Profile, Large Aperture, High Speed


The customized M-686KPMS stage offers a larger footprint, to sink the optional P-541 piezo scanner by 10 mm . The system height together with the P-541 piezo scanner is reduced to only 34 mm

■ Integrated Closed-Loop Piezomotor Drives Provide High Speed to $100 \mathrm{~mm} / \mathrm{s}$
■ Travel Ranges $25 \times 25 \mathrm{~mm}$
$\square$ Integrated Linear Encoders with $0.1 \mu \mathrm{~m}$ Resolution
$\square$ Low-Profile Combinations with PI Piezo Nanopositioning / Scanning Stages
■ Clear Aperture $78 \times 78 \mathrm{~mm}$, $66 \times 66 \mathrm{~mm}$ in Extreme Position
Self-Locking at Rest

| Model | Active <br> Axes | Travel | Max. velocity | Load capacity | Dimensions |
| :--- | :--- | :--- | :--- | :--- | :--- |
| M-686KPMS | X, Y | $50 \times 50 \mathrm{~mm}$ | $100 \mathrm{~mm} / \mathrm{s}$ | 50 N <br> $(10 \mathrm{~N}$ for max. <br> velocity) | $210 \times 210 \times 28 \mathrm{~mm}$ |
| Pline |  |  |  |  |  |
| Micro- |  |  |  |  |  |
| scopy Stage |  |  |  |  |  |

## M-880 3-Axis Planar Precision Micro-Positioning System

XY-Rot-Z Parallel Kinematics System with Very High Holding Force


■ Travel Ranges $20 \times 20 \mathrm{~mm} / 8^{\circ}$<br>■ Static Load Capacity to 150 kg<br>■ ActiveDrive Servo Motors<br>- Low Profile through Parallel Kinematics<br>■ Min. Incremental Motion to $0.75 \boldsymbol{\mu m}$<br>■ Large Clear Aperture<br>■ Sophisticated Controller Included

| Model | Active <br> Axes | Travel <br> range | Max. velocity |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Stiffness |
| :--- |
| (linear axes) | | Dynamic |
| :--- |
| load capacity | | Static load |
| :--- |
| capacity |

## XY Micropositioning Stage

## Fast, Low Profile and Large Aperture with Direct Position Measurement



The M-686.D64 open-frame stage with closed-loop piezo motors provides $25 \times 25 \mathrm{~mm}$ travel range

■ Integrated Closed-Loop Piezomotor Drives Provide High Speed to 100 mm/s<br>■ Travel Ranges $25 \times 25 \mathrm{~mm}$<br>■ Integrated Linear Encoders with $0.1 \mu \mathrm{~m}$ Resolution<br>- Compact Design: 32 mm Profile Height, $170 \times 170 \mathrm{~mm}$ Footprint<br>- Clear Aperture $78 \times 78 \mathrm{~mm}, 66 \times 66 \mathrm{~mm}$ in Extreme Position<br>$\square$ Self-Locking at Rest<br>Compatible with PI Piezo Nanopositioning / Scanning Stages

M-686 open-frame piezomotor stages are mainly designed for automated positioning applications in microscopy. The optimized form factor with a low profile height of only 32 mm and the standardized mounting pattern allows the combination with many PI standard nanopositioning systems.

## Application Examples

- Biotechnology
- Microscopy
- Scanning microscopy
- Confocal microscopy
- Semiconductor testing
- Handling


## Space Saving Piezomotors

Compared to conventional motorized translation stages, the M-686 provides a lower profile and smaller footprint. The compact PILine ${ }^{\oplus}$ piezoelectric linear motors and high-resolution linear encoders make both, the lead screw duct and the flanged, bulky stepper motor employed in traditional stages obsolete. In addition, the piezomotors are self-locking at rest and hold the stage in a stable position without heating up.

## Compatibility to PI Nanopositioning and Scanning Stages

A number of standard PI piezo flexure stages $(150 \times 150 \mathrm{~mm}$ footprint) can be mounted directly on the M-686 open-
frame stage. Depending on the application, these highly specialized, ultra-precise nanopositioning systems are available as fast $X Y$ scanners (for fluorescence microscopy), as vertical $Z$ positioners (3D imaging), or with up to 6 degrees of freedom.

## Limit and Reference Switches

For the protection of your equipment, non-contact Halleffect limit and reference switches are installed. The direction-sensing reference switch supports advanced automation applications with high precision.

## Advantages of PILine ${ }^{\ominus}$

## Micropositioning Systems

The ultrasonic piezoceramic drives used in Plline ${ }^{\oplus}$ micropositioners have a number of advantages over classical drives:

■ Higher Accelerations, up to 5 g

- Speeds up to $500 \mathrm{~mm} / \mathrm{s}$
- Small Form Factor

■ Self-Locking When
Powered Down

- No Shafts, Gears or Other Rotating Parts
■ Non-Magnetic and VacuumCompatible Drive Principle


## Ordering Information

M-686.D64
XY Open-Frame Stage with Closed-Loop PILine ${ }^{\ominus}$ Piezomotor Drives, $25 \times 25 \mathrm{~mm}, 7 \mathrm{~N}, 0.1 \mu \mathrm{~m}$ Linear Encoder

Ask about custom designs!

## Notes

Nanopositioning stages that fit directly on the M-686:

P-561 to P-563
PIMars ${ }^{\text {TM }}$ XYZ Nanopositioning systems with up to $300 \mu \mathrm{~m}$ travel

P-541.2 to P-542.2
Low-profile microscopy XY scanners

P-541.Z
Low-profile Z/tip/tilt piezo nanopositioning stages for microscopy

Customized M-686 stage with a bigger footprint, to sink the piezo Z scanner. The system height together with the $\mathrm{P}-541$ piezo scanner is reduced to only 33 mm



M-686.D64, dimensions in mm . The minimum aperture is $66 \times 66 \mathrm{~mm}$ with both axes at the maximum position

## Technical Data



## XY Microscope Micropositioning Stage

## Long-Range Motion for Sample Positioning



M-545 manual XY microscopy stage with $25 \times 25 \mathrm{~mm}$ travel shown with optional PInano ${ }^{\text {TM }}$ piezo nanopositioner ( $200 \mu \mathrm{~m}$ motion in X, Y und Z) on top. The M-545 stage was designed to provide a stable basis for piezo stages, especially when the highest step-and-settle performance is required

- Stable Platform for P-545 Plnano ${ }^{\text {TM }}$ Piezo Nanopositioning Systems
■ Low Profile for Easy Integration: $\mathbf{3 0} \mathbf{~ m m}$
■ $25 \mathrm{~mm} \times 25 \mathrm{~mm}$ Travel Range
■ Micrometer Screws, Motor Upgrade Available
■ For Nikon, Zeiss, Leica and Olympus Mikroscopes

The M-545, $25 \times 25 \mathrm{~mm}$ microscope stage, is designed to provide a stable platform for piezo scanning stages of the P-545 Plnano ${ }^{\text {TM }}$ series. These highspeed, high-resolution XY / XYZ piezo stages allow nanometerprecision adjustment of the specimen holder in up to three dimensions over $200 \mu \mathrm{~m}$. The $\mathrm{M}-545$ is also compatible with the following capacitive-feedback type piezo stages: P-733, P-5x7, P-5x8, P-54x and P-56x (s.p. 2-72).

The basic M-545 model is equipped with manual micrometers.

## Motorizing for <br> Automated Tasks

The M-545 XY-stage can be supplemented with motorized actuators M-229 (s.p. 1-44). The product number $\mathrm{M}-545 . \mathrm{USC}$ comprises the complete package of two stepper linear actuators with controller and joystick. M-545.USG includes two stepper linear actuators with mounting


M-545.2MO, M-545.2MN dimensions in mm.
Mounting adapters for Olympus and Nikon microscopes
respectively included in delivery

## Ordering Information

M-545.2MO
XY Microscope Stage, $25 \times 25 \mathrm{~mm}$, Micrometer Drive, High Stability, Compatible with PI Piezo Stages, for Olympus Microscopes

## M-545.2MN

XY Microscope Stage, $25 \times 25 \mathrm{~mm}$, Micrometer Drive, High Stability, Compatible with PI Piezo Stages, for Nikon Microscopes

## M-545.2ML

XY Microscope Stage, $25 \times 25 \mathrm{~mm}$, Micrometer Drive, High Stability, Compatible with PI Piezo Stages, for Leica Microscopes

## M-545.2MZ

XY Microscope Stage, $25 \times 25 \mathrm{~mm}$, Micrometer Drive, High Stability, Compatible with PI Piezo Stages, for Zeiss Microscope

Versions for other microscopes on request.

## Accessories

## M-545.USC

Factory Installed Stepper-Mike Upgrade for M-545 XY Microscope Stages: Includes Stepper-Mikes, Joystick and Controller

## M-545.USG

Factory Installed Stepper-Mike Upgrade for M-545 XY Microscope Stages: Includes Stepper-Mikes, Joystick

## M-545.SHP

Adapter Plate for Sample Holders for M-545 XY Microscope Stages

Accommodates the following PI nanopositioning stage series: P-517/518/527/528, P-541/542, P-560 PIMars and P-545 PInano ${ }^{\text {TM }}$

Adapter available for P-733 nanopositioners:

## P-733.AP1

Adapter Plate for Mounting of P-733 Piezo Stages on M-545 XY Microscope Stage

Additional accessories on request.


## Technical Data

| Model | M-545.2M | Unit | Tolerance |
| :---: | :---: | :---: | :---: |
| Active axes | XY |  |  |
| Motion and positioning |  |  |  |
| Displacement | $25 \times 25$ | mm |  |
| Min. incremental motion | 1 | $\mu \mathrm{m}$ | typ. |
| Min. incremental motion with M-229 stepper linear actuators | 1 | $\mu \mathrm{m}$ | typ. |
| Velocity with M-229 stepper linear actuators | 1.5 | $\mathrm{mm} / \mathrm{s}$ | max. |
| Mechanical properties |  |  |  |
| Max. load | 50 | N |  |
| Preload | 10 | N |  |
| Miscellaneous |  |  |  |
| Material | Aluminum, stainless steel |  |  |
| Mass | 4 | kg | $\pm 5 \%$ |

Find further specifications on M-229 stepper linear actuators in the datasheet (s. p. 1-44)

## Compact XYZ Micropositioning Stage for Alignment DC/Piezo Drive System for Nanometer Precision



F-130 are compact computercontrollable XYZ alignment and positioning systems combining the advantages of ultra-high-resolution piezo drives with the long travel range of motorized stages.

They are based on the $\mathrm{M}-110 /$ $\mathrm{M}-111$ micropositioning stages (see page 4-22) and the P-611

## Application Examples

- Photonics packaging
- Optical device testing
- MEMS positioning/ alignment
- Fiber alignment
- Micromachining
- Micromanipulation (life sciences)
- Semiconductor test systems
rapid piezo NanoAlignment units (see page 2-20).

The F-130/F-131 is available in 8 different versions, with step-per- and DC-motor coarse drives, and open- and closedloop piezoelectric fine drives. (see Ordering Information).

The motor drives provide better than $0.05 \mu \mathrm{~m}$ resolution over a travel range of 5 and 15 mm . The piezo fine drives feature a $100 \mu \mathrm{~m}$ travel range in $X, Y$ and $Z$, with zero-stiction, zero-friction flexure guiding systems and 1 nm resolution.

Several fiber, waveguide and optics adapters are available from PI (e.g. model F-603.60, see "Fiber, Objective and Waveguide Holders").

The C-880 multi-axis automation platform (see page 4-124) is recommended as controller.

Ordering Information<br>F-130.3SD<br>XYZ Alignment System, 5 mm / $100 \mu \mathrm{~m}$, DC Motor/Encoder, C/L Piezo<br>F-130.3SS<br>XYZ Alignment System, $5 \mathrm{~mm} /$ $100 \mu \mathrm{~m}$, Stepper Motor, C/L Piezo<br>F-130.30D<br>XYZ Alignment System $5 \mathrm{~mm} /$ $100 \mu \mathrm{~m}$, DC Motor/Encoder, O/L Piezo<br>F-130.30S<br>XYZ Alignment System, 5 mm / $100 \mu \mathrm{~m}$, Stepper Motor, O/L Piezo<br>F-131.3SD<br>XYZ Alignment System, $15 \mathrm{~mm} /$ $100 \mu \mathrm{~m}$, DC Motor/Encoder, C/L Piezo<br>F-131.3SS<br>XYZ Alignment System, $15 \mathrm{~mm} /$ $100 \mu \mathrm{~m}$, Stepper Motor, C/L Piezo<br>F-131.30D<br>XYZ Alignment System, 15 mm / $100 \mu \mathrm{~m}$, DC Motor/Encoder, O/L Piezo<br>F-131.30S<br>XYZ Alignment System, $15 \mathrm{~mm} /$ $100 \mu \mathrm{~m}$, Stepper Motor, O/L Piezo<br>\section*{Ask about custom designs!}



M-116.DG micro rotary stage


XY $\theta_{z}$ micropositioning combination consisting of (from top to bottom) M-116 micro rotary stage and two $\mathrm{M}-111$ translation stages ( M -110.01 adapter for mounting the M-111 on a honeycomb breadboard with M6 on 25 mm centers)



Technical Data

| Model | F-130.3SD | F-130.3SS | F-130.30D | F-130.30S | F-131.3SD | F-131.3SS | F-131.30D | F-131.30S | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Key features | Closed-loop DC motors, closed-loop PZT drives | Stepper motors, closed-loop PZT drives | Closed-loop DC motors, open-loop PZT drives | Stepper motors, open-loop PZT drives | Closed-loop DC motors, closed-loop PZT drives | Stepper motors, closed-loop PZT drives | Closed-loop DC motors, open-loop PZT drives | Stepper motors, open-loop PZT drives |  |
| Piezo travel range (XYZ) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | $\mu \mathrm{m}$ |
| Design resolution (motor) | 0.007 | 0.006 | 0.007 | 0.006 | 0.007 | 0.006 | 0.007 | 0.006 | $\mu \mathrm{m}$ |
| Min. incremental motion (motor) | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | $\mu \mathrm{m}$ |
| Closed-loop / openloop resolution (PZT) | 2/1 | 2/1 | - / 1 | - / 1 | 2/1 | 2/1 | -/ 1 | - / 1 | nm |
| Motorized stage | M-110.3DG | M-110.32S | M-110.3DG | M-110.32S | M-111.3DG | M-111.32S | M-111.3DG | M-111.32S |  |
| Piezo drive | P-611.3SF | P-611.3SF | P-611.3OF | P-611.3OF | P-611.3SF | P-611.3SF | P-611.3OF | P-611.3OF |  |
| Material | Al/ S | AI/ S | Al/ S | AI/S | Al/ S | Al/ S | Al/ S | Al/ S |  |
| Recommended controller | C-880 | - | C-880 | - | C-880 | - | C-880 | - |  |

controller

# M-605 High-Accuracy Micropositioning Stage Ultra-Compact, with Direct Position Measurement 



M-605.2DD XYZ-combination

■ Integrated $0.1 \mu \mathrm{~m}$ Linear Encoder for Highest Accuracy
Travel Ranges 25 mm (1") and 50 mm (2")
Max. Velocity 50 mm/s with ActiveDrive Motor
High Load Capacity up to 30 kg
Zero-Backlash Recirculating Ballscrews
Non-contact Limit and Reference Switches
Stress-Relieved Aluminum Base for Highest Stability
Flexible Bellows Protects the Mechanics from Dust and Spray
XY \& XYZ Combinations Possible
MTBF >20,000 h

M-605 series translation stages are designed to meet the most demanding positioning requirements in applications where space is limited.
They feature a space-saving design with the ballscrew side-byside to the motor and an extremely flat, precision-ma-

[^0]chined base of high-density, stress-relieved aluminum providing exceptional stability and minimum weight.

## Integrated Linear Scale Encoder

For highest accuracy and repeatability, M-605 stages are equipped with integrated linearscale encoders (direct metrology) providing $0.1 \mu \mathrm{~m}$ minimum incremental motion and $1 \mu \mathrm{~m}$ full-travel accuracy.

## Heavy Duty and Maintenance Free

All models are equipped with high-precision linear guiding rails and recirculating ball bearings. The choice of components and careful mounting guarantees high load capacity, longer lifetime and high guiding accuracy.

## Ballscrews for High Speed, Precision and Lifetime

The precision-ground ballscrew is maintenance-free and preloaded to eliminate me-chanical play. Its significantly reduced friction, compared to conventional leadscrews, al-lows for higher velocity, lower power consumption and longer lifetime.
A flexible bellows protects the mechanics from dust and spray.

## ActiveDrive

For maximum dynamic performance, the M-605 series stages are equipped with the highly efficient ActiveDrive direct-drive system, which can achieve speeds of up to $50 \mathrm{~mm} / \mathrm{s}$. The ActiveDrive design, developed by PI, features a high-efficiency PWM (pulse width modulation) servo-amplifier mounted side-by-side with the DC motor and offers several advantages:
■ Increased efficiency, by eliminating power losses between the amplifier and motor
■ Reduced cost of ownership and improved reliability,
because no external driver is required
■ Elimination of PWM amplifier noise radiation, by mounting the amplifier and

Ordering Information<br>\section*{M-605.1DD}<br>Compact Precision Linear Stage, $25 \mathrm{~mm}, 0.1 \mu \mathrm{~m}$ Linear Encoder, ActiveDrive DC Motor<br>M-605.2DD<br>Compact Precision Linear Stage, $50 \mathrm{~mm}, 0.1 \mu \mathrm{~m}$ Linear Encoder, ActiveDrive DC Motor<br>\section*{Accessories:}<br>M-605.AV1<br>Angle Bracket for Vertical Mount of M-605 on M-605<br>M-110.01<br>Adapter Plate for Horizontal Mount of M-605 on Honeycomb Tables, M-400- and M-500 Series Translation Stages and Several Rotation Stages

Ask about custom designs!
motor together in a single, electrically shielded case

## Limit and Reference Switches

For the protection of your equipment, non-contact Halleffect limit and reference switches are installed. The direction-sensing reference switch supports advanced automation applications with high precision.

## Precision Assembly

Each M-605 stage is precision assembled and optimized using laser interferometers for performance testing.


M-605.2DD high precision translation stage


## Technical Data

| Model | M-605.1DD | M-605.2DD | Units |
| :---: | :---: | :---: | :---: |
| Active Axes | X | X |  |
| Motion and positioning |  |  |  |
| Travel range | 25 | 50 | mm |
| Integrated sensor | Linear encoder | Linear encoder |  |
| Sensor resolution | 0.1 | 0.1 | $\mu \mathrm{m}$ |
| Design resolution | 0.1 | 0.1 | $\mu \mathrm{m}$ |
| Min. incremental motion | 0.3 | 0.3 | $\mu \mathrm{m}$ |
| Unidirectional repeatability | 0.1 | 0.1 | $\mu \mathrm{m}$ |
| Bidirectional repeatability | 0.2 | 0.2 | $\mu \mathrm{m}$ |
| Accuracy | 1 | 1 | $\mu \mathrm{m}$ |
| Pitch | $\pm 30$ | $\pm 30$ | $\mu \mathrm{rad}$ |
| Yaw | $\pm 30$ | $\pm 30$ | $\mu \mathrm{rad}$ |
| Max. velocity | 50 | 50 | $\mathrm{mm} / \mathrm{s}$ |
| Origin repeatability | 1 | 1 | $\mu \mathrm{m}$ |
| Mechanical properties |  |  |  |
| Thread pitch | 1 | 1 | mm |
| Max. load | 300 | 300 | N |
| Max. push / pull force | $20 / 20$ | $20 / 20$ | N |
| Max. lateral force | 100 | 100 | N |
| Drive properties |  |  |  |
| Motor type | ActiveDrive DC Motor | ActiveDrive DC Motor |  |
| Operating voltage | 24 (PWM) | 24 (PWM) | V |
| Electrical power | 6 | 6 | W |
| Limit and reference switches | Hall-effect | Hall-effect |  |
| Miscellaneous |  |  |  |
| Operating temperature range | -20 to +65 | -20 to +65 | ${ }^{\circ} \mathrm{C}$ |
| Material | Al (black anodized) | Al (black anodized) |  |
| Mass | 1.5 | 1.8 | kg |
| Recommended controller/driver | C-863 single-axis C-843 PCI board (up to 4 axes) | C-863 single-axis (p. 4-114) C-843 PCI board (p. 4-120) (up to 4 axes) |  |

# Micropositioning Stages, X, XY, XZ, XYZ Combinations 

 High-Precision Linear Guiding, Long Travel, Direct Position Measurement

■ Travel Ranges 102, 204 and $306 \mathrm{~mm}\left(4^{\prime \prime}, 8^{\prime \prime}, 12^{\prime \prime}\right)$
■ Max. Velocity $125 \mathrm{~mm} / \mathrm{s}$ with ActiveDrive ${ }^{\text {TM }}$ Motors
■ Optional $0.1 \mu \mathrm{~m}$ Linear Encoder for Highest Accuracy

- Load Capacity of $100 \mathbf{~ k g}$

■ Stress-Relieved Aluminum Base for Highest Stability
■ Zero-Backlash Recirculating Ballscrews

- Non-contact Limit and Reference Switches

■ XY \& XYZ Combinations (Special Z-Stages Available)
■ MTBF >20,000 h

M-5×1-series translation stages are designed to meet the most demanding positioning requirements and are available in a number of different models. They boast an extremely low profile design to allow multiaxis combinations (see also page $4-58$ and page 4-60) and feature

Application Examples

- R\&D
- Semiconductor testing
- Mass storage device testing
- Metrology
- Photonics packaging
- Quality assurance testing
- Precision Linear Motion Control
a precision-machined base of high-density, stress-relieved aluminum for exceptional stability and minimum weight.


## Heavy Duty and Maintenance Free

The stages are equipped with high-precision linear guiding rails with recirculating ball bearings to guarantee $1 \mu \mathrm{~m} / 100 \mathrm{~mm}$ straightness and flatness. Pre -cision-ground recirculating ball screws with preloaded nuts provide low-friction, maintenancefree and back lash-free positioning. This equipment provides high load capacity and guiding accuracy with long lifetime.

## Four Drive Options

Maximum dynamic perform ance is possible with versions featuring the highly efficient ActiveDrive ${ }^{\text {TM }}$ direct-drive sys-

tem, which can achieve speeds of up to $125 \mathrm{~mm} / \mathrm{s}$.

The ActiveDrive ${ }^{\text {TM }}$ design, de veloped by Pl , features a highefficiency PWM (pulse width modulation) servo-amplifier mounted side-by-side with the DC motor and offers several advantages:

- Increased efficiency, by eliminating power losses between the amplifier and motor
- Reduced cost of ownership and improved reliability, because no external driver is required
- Elimination of PWM amplifier noise radiation, by mounting the amplifier and motor together in a single, electrically shielded case

The M-5x1.PD version provides velocities up to $125 \mathrm{~mm} / \mathrm{sec}$. It is equipped with an Active Drive ${ }^{\text {TM }}$ DC motor and rotary encoder.

The M-5x1.DD models provide superior repeatability of only $0.2 \mu \mathrm{~m}$ by means of integrated optical linear encoders. A motor brake which assures maintenance of the stage position after power-down is also available. The M-5x1.DG versions feature
closed-loop DC motors with shaft-mounted position en coders and precision gearheads providing minimum incremental motion to $0.1 \mu \mathrm{~m}$ with velocities up to $6 \mathrm{~mm} / \mathrm{s}$.

The M-5x1.2S versions models feature a cost-effective directdrive, 2-phase stepper motor providing very smooth opera tion and a resolution of $0.1 \mu \mathrm{~m}$.

## Precision Assembly

The stages are individually tested and optimized using a laser interferometer.

## Notes

For adapters, bracket, etc. (see page 4-90 ff).


XYZ combination with two M-511.DD linear stages and an M-501.1PD precision vertical stage


Technical Data

| Model | $\begin{aligned} & \text { M-511.DD / } \\ & \text { M-521.DD / } \\ & \text { M-531.DD } \end{aligned}$ | M-511.PD / <br> M-521.PD / <br> M-531.PD | M-511.DG / M-521.DG / M-531.DG | $\begin{aligned} & \text { M-511.2S / } \\ & \text { M-521.2S / } \\ & \text { M-531.2S } \end{aligned}$ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Motion and positioning |  |  |  |  |  |
| Travel range | 102 / 204 / 306 | 102 / 204 / 306 | 102 / 204 / 306 | 102 / 204 / 306 | mm |
| Integrated sensor | Linear encoder | Rotary encoder | Rotary encoder | - |  |
| Sensor resolution | $0.1 \mu \mathrm{~m}$ | 4000 | 2048 | - | cts./rev. |
| Design resolution | 0.1 | 0.5 | 0.033 | 0.31 | $\mu \mathrm{m}$ |
| Min. incremental motion | 0.1 | 0.5 | 0.1 | 0.1 | $\mu \mathrm{m}$ |
| Unidirectional repeatability | $\pm 0.1$ | $\pm 0.5$ | $\pm 0.2$ | $\pm 0.2$ | $\mu \mathrm{m}$ |
| Bidirectional repeatability | $\pm 0.2$ | - | - | - | $\mu \mathrm{m}$ |
| Backlash | - | 1 | 1 | 1 | $\mu \mathrm{m}$ |
| Pitch/Yaw | $\pm 25 / \pm 35 / \pm 50$ | $\pm 25 / \pm 35 / \pm 50$ | $\pm 25 / \pm 35 / \pm 50$ | $\pm 25 / \pm 35 / \pm 50$ | $\mu \mathrm{rad}$ |
| Straightness/Flatness per 100 mm | 1 | 1 | 1 | 1 | $\mu \mathrm{m}$ |
| Max. velocity | 50 | 125 | 6 | 20 | $\mathrm{mm} / \mathrm{s}$ |
| Mechanical properties |  |  |  |  |  |
| Thread pitch | 2 | 2 | 2 | 2 | mm |
| Gear ratio | - | - | $(28 / 12)^{4}: 1 \approx 29.6: 1$ | - |  |
| Motor resolution* | - | - | - | 6400* | steps/rev. |
| Max. load | 1000 | 1000 | 1000 | 1000 | N |
| Max. push/pull force | 80 / 80 | 80 / 80 | $80 / 80$ | $80 / 80$ | N |
| Max. lateral force | 200 | 200 | 200 | 200 | N |
| Drive properties |  |  |  |  |  |
| Motor type | ActiveDrive ${ }^{\text {TM }}$ DC Motor | ActiveDrive ${ }^{T M}$ DC Motor | DC-motor, gearhead | 2-phase stepper motor |  |
| Operating voltage | 24 (PWM) | 24 (PWM) | 0 to $\pm 12$ | 24 | V |
| Electrical power | 30 | 30 | 3 |  | W |
| Limit and reference switches | Hall-effect | Hall-effect | Hall-effect | Hall-effect |  |
| Miscellaneous |  |  |  |  |  |
| Operating temperature range | -20 to +65 | -20 to +65 | -20 to +65 | -20 to +65 | ${ }^{\circ} \mathrm{C}$ |
| Material | Al (black anodized) | Al (black anodized) | Al (black anodized) | Al (black anodized) |  |
| Mass | 5 / 6.1 / 7.2 | 5 / 6.1 / 7.2 | 4.9 / 6 / 7.1 | 4.9 / 6 / 7.1 | kg |
| Recommended controller/driver | C-863 (single-axis) C-843 PCI board (up to 4 axes) | C-863 (single-axis) C-843 PCI board (up to 4 axes) | $\begin{aligned} & \text { C-863 (single-axis, p. 4-1149) } \\ & \text { C-843 PCI board (p. 4-120) } \\ & \text { (up to } 4 \text { axes) } \end{aligned}$ | $\begin{aligned} & \text { C-663 (single-axis) } \\ & \text { (p. 4-112) } \end{aligned}$ |  |

*2-phase stepper motor, 24 V chopper voltage, max. $0.8 \mathrm{~A} /$ phase, 400 full steps/rev ., motor resolution with C - 663 stepper motor controller

## Tip/Tilt Stage Micropositioning Stage

## Piezo Drive Option for Nanometer Precision



M-044.D01 tip/tilt stage

M-041 through M-044 are oneand two-axis ( $\theta_{\mathrm{X}}, \theta_{\mathrm{Y}}$ ) tip/tilt stages for small loads. They are spring preloaded for elimination of backlash and feature resolution and repeatability superior to that of goniometric cradles. Versions with piezo translators allow ultra-highresolution dynamic scanning and tracking. See the "Fast Steering Mirrors / Active Optics" section for fast, ultra-high-resolution, tip/tilt platforms (p. 2-79 ff).

The two basic versions (with part number extension .00) are equipped with manual micro meter drives providing 65 and $80 \mu \mathrm{rad}$ minimum incremental motion, respectively. The versions with extension.D01 are equipped with closed-loop, DC-servo-motor drives (model M-227.10 (see p. 1-42) for fur-
ther details and recommended motor controllers) providing 15 and $12 \mu \mathrm{rad}$ minimum incremental motion, respectively. Sets of limit switches eliminate the possibility of overtravel.

High-Resolution Piezo Option
For sub- $\mu$ rad resolution and dynamic tracking or scanning, optional open-loop/closed-loop piezo drive upgrade kits are available. See the P-840 and P-841 (see p. 1-74) in the "Piezo Actuators \& Components" section for further details and recommended controllers. The piezo drives can also be ordered subsequently to upgrade manual or motorized systems.

## Notes

See "Accessories", page 4-90 ff. for adapters, brackets, etc.

## Ordering Information

M-041.00
Small Tilt Stage, Manual
Micrometer Drive
M-041.D01
Small Tilt Stage, DC-Motor Drive
M-042.00
Small Tip/Tilt Stage, Manual Micrometer Drive

M-042.D01
Small Tip/Tilt Stage, DC-Motor
Drive
M-043.00
Tilt Stage, Manual Micrometer Drive

M-043.D01
Tilt Stage, DC-Motor Drive
M-044.00
Tip/Tilt Stage, Manual Micrometer Drive

M-044.D01
Tip/Tilt Stage, DC-Motor Drive

## Upgrades

M-041.U0
Open-Loop Piezo Drive Upgrade Kit for M-041 Tilt Stages

## M-041.US

Closed-Loop Piezo Drive Upgrade Kit for M-041 Tilt Stages

M-042.U0
Open-Loop Piezo Drive Upgrade Kit for M-042 Tip/Tilt Stages

## M-042.US

Closed-Loop Piezo Drive Upgrade Kit for M-042 Tip/Tilt Stages

## M-043.U0

Open-Loop Piezo Drive Upgrade Kit for M-043 Tilt Stages

M-043.US
Closed-Loop Piezo Drive Upgrade
Kit for M-043 Tilt Stages

## M-044.U0

Open-Loop Piezo Drive Upgrade Kit for M-044 Tip/Tilt Stages

## M-044.US

Closed-Loop Piezo Drive Upgrade Kit for M-044 Tip/Tilt Stages

Ask about custom designs!



M-042.00 tip/tilt stage with optional PZT drives

## Tip/Tilt Stage Micropositioning Stage

## Piezo Drive Option for Nanometer Precision



M-044.00 dimensions (in mm)

## Technical Data

| Model | M-041.00 | M-042.00 | M-043.00 | M-044.00 | M-041.D01 | M-042.D01 | M-043.D01 | M-044.D01 | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tilt axes | $\theta_{x}$ | $\theta_{x} \theta_{y}$ |  |
| Tilt range | $\pm 9$ | $\pm 9$ | $\pm 7$ | $\pm 7$ | $\pm 9$ | $\pm 9$ | $\pm 7$ | $\pm 7$ | ${ }^{\circ}$ (axis) |
| Fine range (piezo option) | $\pm 1.2$ | $\pm 0.6$ | $\pm 1.4$ | $\pm 1.4$ | $\pm 1.2$ | $\pm 0.6$ | $\pm 1.4$ | $\pm 1.4$ | mrad (axis) |
| Design resolution | - | - | - | - | 0.28 | 0.28 | 0.23 | 0.23 | $\mu \mathrm{rad}$ |
| Min. incremental motion | 80 | 80 | 65 | 65 | 5 | 5 | 5 | 5 | $\mu \mathrm{rad}$ |
| Min. incremental motion (piezo option) | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | $\mu \mathrm{rad}$ |
| Rotation / linear input | 80 | 80 | 65 | 65 | 80 | 80 | 65 | 65 | $\mu \mathrm{rad} / \mu \mathrm{m}$ |
| Unidirectional repeatability | - | - | - | - | 20 | 20 | 15 | 15 | $\mu \mathrm{rad}$ |
| Backlash | - | - | - | - | 200 | 200 | 175 | 175 | $\mu \mathrm{rad}$ |
| Max. velocity (motor) | - | - | - | - | 4.5 | 4.5 | 3.6 | 3.6 | \% |
| Max. load (A) | 4 | 4 | 5 | 5 | 4 | 4 | 5 | 5 | kg |
| Max torque (B, C) | 450, 150 | 450, 150 | 750, 250 | 750, 250 | 450, 150 | 450, 150 | 750, 250 | 750, 250 | mNm |
| Drive | M-622 <br> Micrometer | M-622 <br> Micrometer | M-624 <br> Micrometer | M-624 <br> Micrometer | M-227.10 DC-Mike | M-227.10 DC-Mike | M-227.10 DC-Mike | И-227.10 <br> DC-Mike |  |
| Piezo drive (optional) M-04x.U0 / M-04x.US | $\begin{aligned} & \text { P-840.20 / } \\ & \text { P-841.20 } \end{aligned}$ | $\begin{aligned} & \text { P-840.10 / } \\ & \text { P-841.10 } \end{aligned}$ | $\begin{aligned} & \text { P-840.30 / } \\ & \text { P-841.30 } \end{aligned}$ | $\begin{aligned} & \text { P-840.30 / } \\ & \text { P-841.30 } \end{aligned}$ | $\begin{aligned} & \text { P-840.20 / } \\ & \text { P-841.20 } \end{aligned}$ | $\begin{aligned} & \text { P-840.10 / } \\ & \text { P-841.10 } \end{aligned}$ | $\begin{aligned} & \text { P-840.30 / } \\ & \text { P-841.30 } \end{aligned}$ | $\begin{aligned} & \text { P-840.30 / } \\ & \text { P-841.30 } \end{aligned}$ |  |
| Mass | 0.4 | 0.6 | 0.8 | 1.2 | 0.5 | 0.7 | 0.9 | 1.5 | kg |
| Body material | AI |  |

# Miniature Micropositioning Stage w/Piezo Option Precision Crossed Roller Guides, PiezoMike Option, XY(Z) Combinations 



M-105 and M-106 are microme-ter-driven translation stages with travel ranges of 18 mm and 5 mm , respectively . The carriage is spring preloaded against the micrometer tip for excellent repeatability and elimination of backlash. M-105 and $\mathrm{M}-106$ stages are available in one-, two- or three-axis configurations. Precision crossed roller bearings guarantee straightness of travel of better than $2 \mu \mathrm{~m}$. The $\mathrm{M}-106$ is equipped with a differential micrometer drive providing resolution of $0.1 \mu \mathrm{~m}$.

## PiezoMike Option

Versions with PiezoMike drive provide additional $30 \mu \mathrm{~m}$ fine range for remotely controlled ultra-high-resolution (e.g. scanning or tracking, (see p. 1-54) for further details and recommended controllers).

The vertical stage in the XYZ assembly supports the load through the micrometer spin-
dle (not the preload springs) providing excellent stability.

## Motor Drive Upgrades

Two motor drives are available, the M-231.17 and the M 232.17 actuators (see p. 1-48 and p. 1-49). Both provide resolution a resolution of $0.1 \mu \mathrm{~m}$.

Ordering Information

M-105.10
Translation Stage, 18 mm
M-105.11
Translation Stage, 18 mm , with Lockable Micrometer Drive

M-105.20
XY-Translation Stage, 18 mm

## M-105.30

XYZ -Translation Stage, 18 mm , (Includes M-009.10, Side Mount Z-Bracket)

## M-105.1P

Translation Stage, 18 mm , PiezoMike Drive

M-105.2P
XY-Translation Stage, 18 mm , PiezoMike Drive

## M-105.3P

XYZ-Translation Stage, 18 mm , PiezoMike- Drive (Includes M-009.10, Side Mount Z-Bracket)

## M-106.10

Translation Stage, 5 mm , Differential Micrometer Drive

## M-106.20

XY-Translation Stage, 5 mm ,
Differential Micrometer Drive
M-106.30
XYZ-Translation Stage, 5 mm ,
Differential Micrometer Drive
(Includes M-009.10, Side Mount Z-Bracket)

## M-105.1B

Translation Stage, Basic Unit, Order Drives Separately

## M-105.2B

XY-Translation Stage, Basic Unit, Order Drives Separately

## M-105.3BA

XYZ-Translation Stage, Basic Unit (Includes M-105.VB1, Top Mount Z-Bracket), Order Drives Separately

## M-105.3BB

XYZ-Translation Stage, Basic Unit (Includes M-009.10, Side Mount Z-Bracket), Order Drives Separately

## Accessories

## M-232.17

DC-Mike, Linear Actuator

## M-009.10

Z-axis Mounting Bracket for Vertical
Mount of M-105/6 (Attaches to Side of M-105)

## M-105.VB1

Z-axis Mounting Bracket for Vertical Mount of M-105/6 (Attaches to Top of M-105)

## M-009.20

Mounting Bracket for Mounting
P-280 PZT NanoPositioning
Systems or F-010 Fiber Holders

## M-009.30

Z-axis Mounting Bracket for Vertical
Mount of M-105/6 Stages on PI
Standard Hole Pattern

## Technical Data

| Model | M-105.10* | M-105.1P* | M-106.10* | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Travel range | 18 | 18 | 5 | mm |
| Piezo fine travel range | - | 30 | - | $\mu \mathrm{m}$ |
| Min. incremental motion (piezo drive) | - | 0.01 | - | $\mu \mathrm{m}$ |
| Min. incremental motion (micrometer drive)** | 1 | 1 | 0.1 | $\mu \mathrm{m}$ |
| Backlash | 2 | 2 | 2 | $\mu \mathrm{m}$ |
| Straightness | 2 | 2 | 2 | $\mu \mathrm{m}$ |
| Flatness | 2 | 2 | 2 | $\mu \mathrm{m}$ |
| Max. normal load capacity | 100 | 100 | 100 | kg |
| Max. push/pull force | $20 / 4$ | $20 / 4$ | $20 / 4$ | N |
| Max. lateral force | 4 | 4 | 4 | N |
| Drive | M-626.00 | P-854.00 | M-653.00 |  |
| Micrometer pitch | 0.5 / - | 0.5 / - | $0.4 / 0.02$ | $\mathrm{mm} / \mathrm{rev}$. |
| Mass | 0.32 | 0.38 | 0.33 | kg |
| Body material | St | St | St |  |
| Recommended piezo driver | - | $\begin{aligned} & \text { E-660 (p. 2-119), E-610 (p. 2-110) } \\ & \text { E-500 System (p. 2-142) } \end{aligned}$ | - |  |

[^1]** Motorized versions achieve up to 100 nm .



Combination of $\mathrm{M}-105.1 \mathrm{~B}$ basic unit and M-232.17 high-resolution DC-Mike actuator

# Linear-Motor Driven Mini Micropositioning Slide Compact, Fast, with Ultrasonic Piezo Linear Drives, Direct Position Measurement 

With each oscillatory cycle, the mechanics executes a step of a few nanometers; the macroscopic result is smooth motion with a virtually unlimited travel range.

## Advantages of PILine ${ }^{\circledR}$ Micropositioning Systems

The ultrasonic piezoceramic drives used in PILine ${ }^{\circledR}$ micropositioners have a number of advantages over classical drives:

- Higher Accelerations, up to 5 g
■ Speeds up to $500 \mathrm{~mm} / \mathrm{s}$
$\square$ Small Form Factor
■ Self-Locking When Powered Down
■ No Shafts, Gears or Other Rotating Parts
■ Non-Magnetic and VacuumCompatible Drive Principle


## Optimized Controller and Drive Electronics

PILine ${ }^{\circledR}$ motors require a special drive electronics to generate the ultrasonic oscillations for piezoceramic element. For optimum performance the highly specialized C-867 (see p. 4-116) motion controller is recommended. This sophisticated controller also inte-grates the drive electronics. Furthermore, the controller has a number of special features, including dynamic parameter switching for an optimized high-speed motion and settling behavior to take into account the motion characteristics typical of piezomotors. The broad-band encoder input ( 50 MHz ) supports the outstanding high accelerations and velocities of Pline ${ }^{\circledR}$ drives at high resolutions.

Optionally, for use with third party servo controllers, the C-185 analog drive electronics (stand-alone unit) is available. It controls the motor speed by an analog $\pm 10 \mathrm{~V}$ signal. For

Ordering Information<br>M-663.465<br>PILine ${ }^{\circledR}$ Translation Stage, 19 mm , Linear Encoder, $0.1 \mu \mathrm{~m}$ Resolution<br>M-663.Y65<br>PILine ${ }^{\circledR}$ Translation Stage, 19 mm , Linear Encoder, $0.1 \mu \mathrm{~m}$ Resolution, turned cable outlet, XY mountable<br>\section*{M-663.46V}<br>PILine ${ }^{\oplus}$ Translation Stage, 19 mm , Linear Encoder, $0.1 \mu \mathrm{~m}$ Resolution, Vacuum Compatible to $10^{-6} \mathrm{hPa}$<br>\section*{Accessories:}<br>C-867.161<br>Piezomotor Controller with Drive Electronics, 1 Channel, for PILine ${ }^{\oplus}$ Systems with P-661 Motors<br>Driver for use with separate controller:<br>C-185.161<br>Analog Stand-Alone Drive Electronics with Power Supply for PILine ${ }^{\oplus}$ P-661 Motors

optimum performance the driver must be tuned together with the mechanics and should be ordered at the same time as the motor/stage.

## Note

The products described in this document are in part protected by the following patents:
US Pat. No. 6,765,335
German Patent No. 10154526


## Technical Data

| Model | M-663.465 | Units | Tolerance |
| :---: | :---: | :---: | :---: |
| Active axes | X |  |  |
| Motion and positioning |  |  |  |
| Travel range | 19 | mm |  |
| Integrated sensor | Linear encod |  |  |
| Sensor resolution | 0.1 | $\mu \mathrm{m}$ |  |
| Min. incremental motion | 0.3 | $\mu \mathrm{m}$ | typ. |
| Bidirectional repatability | $\pm 0.3$ | $\mu \mathrm{m}$ | typ. |
| Unidirectional repeatability | 0.2 | $\mu \mathrm{m}$ | typ. |
| Pitch | 300 | $\mu \mathrm{rad}$ | typ. |
| Yaw | 300 | $\mu \mathrm{rad}$ | typ. |
| Max. velocity | 400 | mm/s |  |
| Reference switch repeatability | 1 | $\mu \mathrm{m}$ | typ. |
| Mechanical properties |  |  |  |
| Max. load | 5 | N |  |
| Max. push/pull force | 2 | N |  |
| Max. holding force | 2 | N |  |
| Drive properties |  |  |  |
| Motor type | P-661 PILine ultrasonic p |  |  |
| Motor voltage range | 120 (peak-p <br> 42 (RMS)* | V |  |
| Electrical power | 5** | W | nominal |
| Current | 400** | mA |  |
| Reference switch | Hall-effect |  |  |
| Miscellaneous |  |  |  |
| Operating temperature range | -20 to +50 | ${ }^{\circ} \mathrm{C}$ |  |
| Material | Al (black an |  |  |
| Dimensions | $35 \times 35 \times 15$ | mm |  |
| Mass | 40 | g | $\pm 5 \%$ |
| Cable length | 1.5 | m | $\pm 10 \mathrm{~mm}$ |
| Connector | MDR, 14-pin |  |  |
| Recommended controller/driver | $\begin{aligned} & \mathrm{C}-867.161 \mathrm{Si} \\ & \text { controller/dr } \\ & \mathrm{C}-185.161 \mathrm{Di} \end{aligned}$ | 16) nics (p. |  |

*Power is supplied by the drive electronics which runs on 12 V DC
**For drive electronics


## Parallel Kinematic Tripod / Goniometer Micro-Positioner

## Precision Positioning in $\mathbf{X}, \mathbf{Z}, \theta_{\mathbf{Y}}$



The parallel-kinematics tripod is designed for precision positioning, offering elevation, translation and tilt motion around the (horizontal) $y$-axis, with a user-defined pivot point

Program Overview

- Piezo Ceramic Actuators \& Motors
- Piezo Nanopositioning Systems and Scanners

■ Active Optics / Tip-Tilt Platforms
■ Capacitive Nanometrology Sensors

- Piezo Electronics: Amplifiers and Controllers
- Hexapod 6-Axis Positioners / Robots
- Micropositioning Stages \& Actuators
- Photonics Alignment Systems, Solutions for Telecommunications
■ Motor Controllers
■ Ultrasonic Linear Motors


USA (East) \& CANADA
PI (Physik Instrumente) L.P. 16 Albert St.
Auburn, MA 01501
Tel: +1 (508) 8323456
Fax: +1 (508) 8320506
info@pi-usa.us
www.pi-usa.us
JAPAN
PI Japan Co., Ltd.
Akebono-cho 2-38-5
Tachikawa-shi
J-Tokyo 190
Tel: +81 (42) 5267300
Fax: +81 (42) 5267301
info@pi-japan.jp
www.pi-japan.jp

CHINA
Physik Instrumente (PI Shanghai) Co., Ltd. Building No. 7-301 Longdong Avenue 3000 201203 Shanghai, China Tel: +86 (21) 68790008 Fax: +86 (21) 68790098
info@pi-china.cn www.pi-china.cn

FRANCE
PI France S.A.S
244 bis, avenue Max Dormoy Via G. Marconi, 28
92120 Montrouge I-20091 Bresso (MI)
Tel: +33 (1) 55226000
Fax: +33 (1) 41485662
info.france@pi.ws
www.pi-france.fr
ITALY
Physik Instrumente (PI) S.r.I.

Tel: +39 (02) 66501101
Fax: +39 (02) 87385916
info @pionline.it
www.pionline.it

USA (West) \& MEXICO
PI (Physik Instrumente) L.P.
5420 Trabuco Rd., Suite 100
Irvine, CA 92620
Tel: +1 (949) 6799191
Fax: +1 (949) 6799292
info @pi-usa.us
www.pi-usa.us

PI Japan Co., Ltd.
Hanahara Dai-ni Building, \#703
4-11-27 Nishinakajima,
Yodogawa-ku, Osaka-shi
J-Osaka 532
Tel: +81 (6) 63045605
Fax: +81 (6) 63045606
info @pi-japan.jp
www.pi-japan.jp

## UK \& IRELAND

PI (Physik Instrumente) Ltd.
Trent House
University Way,
Cranfield Technology Park, Cranfield,
Bedford MK43 0AN
Tel: +44 (1234) 756360
Fax: +44 (1234) 756369
uk@pi.ws
www.physikinstrumente.co.uk

## GERMANY

Physik Instrumente (PI)
GmbH \& Co. KG
Auf der Römerstr. 1
D-76228 Karlsruhe/Palmbach
Tel: +49 (721) 4846-0
Fax: +49 (721) 4846-100
info@pi.ws •www.pi.ws


[^0]:    Application Examples

    - R\&D
    - Semiconductor testing
    - Mass storage device testing
    - Metrology
    - Photonics packaging
    - Quality assurance testing
    - Precision Linear Motion Control

[^1]:    *Versions M-105.2x, M-106.2x and M-105.3x M-106.x0 are combinations of basic . 1 x . versions

